org.apache.spark.sql

SchemaRDD

class SchemaRDD extends RDD[Row] with SchemaRDDLike

:: AlphaComponent :: An RDD of Row objects that has an associated schema. In addition to standard RDD functions, SchemaRDDs can be used in relational queries, as shown in the examples below.

Importing a SQLContext brings an implicit into scope that automatically converts a standard RDD whose elements are scala case classes into a SchemaRDD. This conversion can also be done explicitly using the createSchemaRDD function on a SQLContext.

A SchemaRDD can also be created by loading data in from external sources. Examples are loading data from Parquet files by using the parquetFile method on SQLContext and loading JSON datasets by using jsonFile and jsonRDD methods on SQLContext.

SQL Queries

A SchemaRDD can be registered as a table in the SQLContext that was used to create it. Once an RDD has been registered as a table, it can be used in the FROM clause of SQL statements.

// One method for defining the schema of an RDD is to make a case class with the desired column
// names and types.
case class Record(key: Int, value: String)

val sc: SparkContext // An existing spark context.
val sqlContext = new SQLContext(sc)

// Importing the SQL context gives access to all the SQL functions and implicit conversions.
import sqlContext._

val rdd = sc.parallelize((1 to 100).map(i => Record(i, s"val_$i")))
// Any RDD containing case classes can be registered as a table.  The schema of the table is
// automatically inferred using scala reflection.
rdd.registerTempTable("records")

val results: SchemaRDD = sql("SELECT * FROM records")

Language Integrated Queries

case class Record(key: Int, value: String)

val sc: SparkContext // An existing spark context.
val sqlContext = new SQLContext(sc)

// Importing the SQL context gives access to all the SQL functions and implicit conversions.
import sqlContext._

val rdd = sc.parallelize((1 to 100).map(i => Record(i, "val_" + i)))

// Example of language integrated queries.
rdd.where('key === 1).orderBy('value.asc).select('key).collect()
Annotations
@AlphaComponent()
Linear Supertypes
SchemaRDDLike, RDD[Row], Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SchemaRDD
  2. SchemaRDDLike
  3. RDD
  4. Logging
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SchemaRDD(sqlContext: SQLContext, baseLogicalPlan: LogicalPlan)

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. def ++(other: RDD[Row]): RDD[Row]

    Return the union of this RDD and another one.

    Return the union of this RDD and another one. Any identical elements will appear multiple times (use .distinct() to eliminate them).

    Definition Classes
    RDD
  5. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  6. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  7. def aggregate(aggregateExprs: Expression*): SchemaRDD

    Performs an aggregation over all Rows in this RDD.

    Performs an aggregation over all Rows in this RDD. This is equivalent to a groupBy with no grouping expressions.

    schemaRDD.aggregate(Sum('sales) as 'totalSales)
  8. def aggregate[U](zeroValue: U)(seqOp: (U, Row) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U

    Aggregate the elements of each partition, and then the results for all the partitions, using given combine functions and a neutral "zero value".

    Aggregate the elements of each partition, and then the results for all the partitions, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are allowed to modify and return their first argument instead of creating a new U to avoid memory allocation.

    Definition Classes
    RDD
  9. def as(alias: Symbol): SchemaRDD

    Applies a qualifier to the attributes of this relation.

    Applies a qualifier to the attributes of this relation. Can be used to disambiguate attributes with the same name, for example, when performing self-joins.

    val x = schemaRDD.where('a === 1).as('x)
    val y = schemaRDD.where('a === 2).as('y)
    x.join(y).where("x.a".attr === "y.a".attr),
  10. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  11. val baseLogicalPlan: LogicalPlan

    Definition Classes
    SchemaRDD → SchemaRDDLike
  12. def baseSchemaRDD: SchemaRDD

    Definition Classes
    SchemaRDD → SchemaRDDLike
  13. def cache(): SchemaRDD.this.type

    Overridden cache function will always use the in-memory columnar caching.

    Overridden cache function will always use the in-memory columnar caching.

    Definition Classes
    SchemaRDDRDD
  14. def cartesian[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(Row, U)]

    Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of elements (a, b) where a is in this and b is in other.

    Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of elements (a, b) where a is in this and b is in other.

    Definition Classes
    RDD
  15. def checkpoint(): Unit

    Mark this RDD for checkpointing.

    Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint directory set with SparkContext.setCheckpointDir() and all references to its parent RDDs will be removed. This function must be called before any job has been executed on this RDD. It is strongly recommended that this RDD is persisted in memory, otherwise saving it on a file will require recomputation.

    Definition Classes
    RDD
  16. def clearDependencies(): Unit

    Clears the dependencies of this RDD.

    Clears the dependencies of this RDD. This method must ensure that all references to the original parent RDDs is removed to enable the parent RDDs to be garbage collected. Subclasses of RDD may override this method for implementing their own cleaning logic. See org.apache.spark.rdd.UnionRDD for an example.

    Attributes
    protected
    Definition Classes
    RDD
  17. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  18. def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[Row] = null): SchemaRDD

    Return a new RDD that is reduced into numPartitions partitions.

    Return a new RDD that is reduced into numPartitions partitions.

    This results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions.

    However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can pass shuffle = true. This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is).

    Note: With shuffle = true, you can actually coalesce to a larger number of partitions. This is useful if you have a small number of partitions, say 100, potentially with a few partitions being abnormally large. Calling coalesce(1000, shuffle = true) will result in 1000 partitions with the data distributed using a hash partitioner.

    Definition Classes
    SchemaRDDRDD
  19. def collect(): Array[Row]

    Return an array that contains all of the elements in this RDD.

    Return an array that contains all of the elements in this RDD.

    Definition Classes
    SchemaRDDRDD
  20. def collect[U](f: PartialFunction[Row, U])(implicit arg0: ClassTag[U]): RDD[U]

    Return an RDD that contains all matching values by applying f.

    Return an RDD that contains all matching values by applying f.

    Definition Classes
    RDD
  21. def compute(split: Partition, context: TaskContext): Iterator[Row]

    :: DeveloperApi :: Implemented by subclasses to compute a given partition.

    :: DeveloperApi :: Implemented by subclasses to compute a given partition.

    Definition Classes
    SchemaRDDRDD
  22. def context: SparkContext

    The org.apache.spark.SparkContext that this RDD was created on.

    The org.apache.spark.SparkContext that this RDD was created on.

    Definition Classes
    RDD
  23. def count(): Long

    :: Experimental :: Return the number of elements in the RDD.

    :: Experimental :: Return the number of elements in the RDD. Unlike the base RDD implementation of count, this implementation leverages the query optimizer to compute the count on the SchemaRDD, which supports features such as filter pushdown.

    Definition Classes
    SchemaRDDRDD
    Annotations
    @Experimental()
  24. def countApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble]

    :: Experimental :: Approximate version of count() that returns a potentially incomplete result within a timeout, even if not all tasks have finished.

    :: Experimental :: Approximate version of count() that returns a potentially incomplete result within a timeout, even if not all tasks have finished.

    Definition Classes
    RDD
    Annotations
    @Experimental()
  25. def countApproxDistinct(relativeSD: Double = 0.05): Long

    Return approximate number of distinct elements in the RDD.

    Return approximate number of distinct elements in the RDD.

    The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here.

    relativeSD

    Relative accuracy. Smaller values create counters that require more space. It must be greater than 0.000017.

    Definition Classes
    RDD
  26. def countApproxDistinct(p: Int, sp: Int): Long

    :: Experimental :: Return approximate number of distinct elements in the RDD.

    :: Experimental :: Return approximate number of distinct elements in the RDD.

    The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here.

    The relative accuracy is approximately 1.054 / sqrt(2^p). Setting a nonzero sp > p would trigger sparse representation of registers, which may reduce the memory consumption and increase accuracy when the cardinality is small.

    p

    The precision value for the normal set. p must be a value between 4 and sp if sp is not zero (32 max).

    sp

    The precision value for the sparse set, between 0 and 32. If sp equals 0, the sparse representation is skipped.

    Definition Classes
    RDD
    Annotations
    @Experimental()
  27. def countByValue()(implicit ord: Ordering[Row] = null): Map[Row, Long]

    Return the count of each unique value in this RDD as a local map of (value, count) pairs.

    Return the count of each unique value in this RDD as a local map of (value, count) pairs.

    Note that this method should only be used if the resulting map is expected to be small, as the whole thing is loaded into the driver's memory. To handle very large results, consider using rdd.map(x => (x, 1L)).reduceByKey(_ + _), which returns an RDD[T, Long] instead of a map.

    Definition Classes
    RDD
  28. def countByValueApprox(timeout: Long, confidence: Double = 0.95)(implicit ord: Ordering[Row] = null): PartialResult[Map[Row, BoundedDouble]]

    :: Experimental :: Approximate version of countByValue().

    :: Experimental :: Approximate version of countByValue().

    Definition Classes
    RDD
    Annotations
    @Experimental()
  29. final def dependencies: Seq[Dependency[_]]

    Get the list of dependencies of this RDD, taking into account whether the RDD is checkpointed or not.

    Get the list of dependencies of this RDD, taking into account whether the RDD is checkpointed or not.

    Definition Classes
    RDD
  30. def distinct(numPartitions: Int)(implicit ord: Ordering[Row] = null): SchemaRDD

    Return a new RDD containing the distinct elements in this RDD.

    Return a new RDD containing the distinct elements in this RDD.

    Definition Classes
    SchemaRDDRDD
  31. def distinct(): SchemaRDD

    Return a new RDD containing the distinct elements in this RDD.

    Return a new RDD containing the distinct elements in this RDD.

    Definition Classes
    SchemaRDDRDD
  32. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  33. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  34. def except(otherPlan: SchemaRDD): SchemaRDD

    Performs a relational except on two SchemaRDDs

    Performs a relational except on two SchemaRDDs

    otherPlan

    the SchemaRDD that should be excepted from this one.

  35. def filter(f: (Row) ⇒ Boolean): SchemaRDD

    Return a new RDD containing only the elements that satisfy a predicate.

    Return a new RDD containing only the elements that satisfy a predicate.

    Definition Classes
    SchemaRDDRDD
  36. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  37. def first(): Row

    Return the first element in this RDD.

    Return the first element in this RDD.

    Definition Classes
    RDD
  38. def firstParent[U](implicit arg0: ClassTag[U]): RDD[U]

    Returns the first parent RDD

    Returns the first parent RDD

    Attributes
    protected[org.apache.spark]
    Definition Classes
    RDD
  39. def flatMap[U](f: (Row) ⇒ TraversableOnce[U])(implicit arg0: ClassTag[U]): RDD[U]

    Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results.

    Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results.

    Definition Classes
    RDD
  40. def fold(zeroValue: Row)(op: (Row, Row) ⇒ Row): Row

    Aggregate the elements of each partition, and then the results for all the partitions, using a given associative function and a neutral "zero value".

    Aggregate the elements of each partition, and then the results for all the partitions, using a given associative function and a neutral "zero value". The function op(t1, t2) is allowed to modify t1 and return it as its result value to avoid object allocation; however, it should not modify t2.

    Definition Classes
    RDD
  41. def foreach(f: (Row) ⇒ Unit): Unit

    Applies a function f to all elements of this RDD.

    Applies a function f to all elements of this RDD.

    Definition Classes
    RDD
  42. def foreachPartition(f: (Iterator[Row]) ⇒ Unit): Unit

    Applies a function f to each partition of this RDD.

    Applies a function f to each partition of this RDD.

    Definition Classes
    RDD
  43. def generate(generator: Generator, join: Boolean = false, outer: Boolean = false, alias: Option[String] = None): SchemaRDD

    :: Experimental :: Applies the given Generator, or table generating function, to this relation.

    :: Experimental :: Applies the given Generator, or table generating function, to this relation.

    generator

    A table generating function. The API for such functions is likely to change in future releases

    join

    when set to true, each output row of the generator is joined with the input row that produced it.

    outer

    when set to true, at least one row will be produced for each input row, similar to an OUTER JOIN in SQL. When no output rows are produced by the generator for a given row, a single row will be output, with NULL values for each of the generated columns.

    alias

    an optional alias that can be used as qualifier for the attributes that are produced by this generate operation.

    Annotations
    @Experimental()
  44. def getCheckpointFile: Option[String]

    Gets the name of the file to which this RDD was checkpointed

    Gets the name of the file to which this RDD was checkpointed

    Definition Classes
    RDD
  45. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  46. def getDependencies: Seq[Dependency[_]]

    Implemented by subclasses to return how this RDD depends on parent RDDs.

    Implemented by subclasses to return how this RDD depends on parent RDDs. This method will only be called once, so it is safe to implement a time-consuming computation in it.

    Attributes
    protected
    Definition Classes
    SchemaRDDRDD
  47. def getPartitions: Array[Partition]

    Implemented by subclasses to return the set of partitions in this RDD.

    Implemented by subclasses to return the set of partitions in this RDD. This method will only be called once, so it is safe to implement a time-consuming computation in it.

    Definition Classes
    SchemaRDDRDD
  48. def getPreferredLocations(split: Partition): Seq[String]

    Optionally overridden by subclasses to specify placement preferences.

    Optionally overridden by subclasses to specify placement preferences.

    Attributes
    protected
    Definition Classes
    RDD
  49. def getStorageLevel: StorageLevel

    Get the RDD's current storage level, or StorageLevel.

    Get the RDD's current storage level, or StorageLevel.NONE if none is set.

    Definition Classes
    RDD
  50. def glom(): RDD[Array[Row]]

    Return an RDD created by coalescing all elements within each partition into an array.

    Return an RDD created by coalescing all elements within each partition into an array.

    Definition Classes
    RDD
  51. def groupBy(groupingExprs: Expression*)(aggregateExprs: Expression*): SchemaRDD

    Performs a grouping followed by an aggregation.

    Performs a grouping followed by an aggregation.

    schemaRDD.groupBy('year)(Sum('sales) as 'totalSales)
  52. def groupBy[K](f: (Row) ⇒ K, p: Partitioner)(implicit kt: ClassTag[K], ord: Ordering[K] = null): RDD[(K, Iterable[Row])]

    Return an RDD of grouped items.

    Return an RDD of grouped items. Each group consists of a key and a sequence of elements mapping to that key. The ordering of elements within each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.

    Note: This operation may be very expensive. If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using PairRDDFunctions.aggregateByKey or PairRDDFunctions.reduceByKey will provide much better performance.

    Definition Classes
    RDD
  53. def groupBy[K](f: (Row) ⇒ K, numPartitions: Int)(implicit kt: ClassTag[K]): RDD[(K, Iterable[Row])]

    Return an RDD of grouped elements.

    Return an RDD of grouped elements. Each group consists of a key and a sequence of elements mapping to that key. The ordering of elements within each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.

    Note: This operation may be very expensive. If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using PairRDDFunctions.aggregateByKey or PairRDDFunctions.reduceByKey will provide much better performance.

    Definition Classes
    RDD
  54. def groupBy[K](f: (Row) ⇒ K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[Row])]

    Return an RDD of grouped items.

    Return an RDD of grouped items. Each group consists of a key and a sequence of elements mapping to that key. The ordering of elements within each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.

    Note: This operation may be very expensive. If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using PairRDDFunctions.aggregateByKey or PairRDDFunctions.reduceByKey will provide much better performance.

    Definition Classes
    RDD
  55. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  56. val id: Int

    A unique ID for this RDD (within its SparkContext).

    A unique ID for this RDD (within its SparkContext).

    Definition Classes
    RDD
  57. def insertInto(tableName: String): Unit

    :: Experimental :: Appends the rows from this RDD to the specified table.

    :: Experimental :: Appends the rows from this RDD to the specified table.

    Definition Classes
    SchemaRDDLike
    Annotations
    @Experimental()
  58. def insertInto(tableName: String, overwrite: Boolean): Unit

    :: Experimental :: Adds the rows from this RDD to the specified table, optionally overwriting the existing data.

    :: Experimental :: Adds the rows from this RDD to the specified table, optionally overwriting the existing data.

    Definition Classes
    SchemaRDDLike
    Annotations
    @Experimental()
  59. def intersect(otherPlan: SchemaRDD): SchemaRDD

    Performs a relational intersect on two SchemaRDDs

    Performs a relational intersect on two SchemaRDDs

    otherPlan

    the SchemaRDD that should be intersected with this one.

  60. def intersection(other: RDD[Row], numPartitions: Int): SchemaRDD

    Return the intersection of this RDD and another one.

    Return the intersection of this RDD and another one. The output will not contain any duplicate elements, even if the input RDDs did. Performs a hash partition across the cluster

    Note that this method performs a shuffle internally.

    numPartitions

    How many partitions to use in the resulting RDD

    Definition Classes
    SchemaRDDRDD
  61. def intersection(other: RDD[Row], partitioner: Partitioner)(implicit ord: Ordering[Row] = null): SchemaRDD

    Return the intersection of this RDD and another one.

    Return the intersection of this RDD and another one. The output will not contain any duplicate elements, even if the input RDDs did.

    Note that this method performs a shuffle internally.

    partitioner

    Partitioner to use for the resulting RDD

    Definition Classes
    SchemaRDDRDD
  62. def intersection(other: RDD[Row]): SchemaRDD

    Return the intersection of this RDD and another one.

    Return the intersection of this RDD and another one. The output will not contain any duplicate elements, even if the input RDDs did.

    Note that this method performs a shuffle internally.

    Definition Classes
    SchemaRDDRDD
  63. def isCheckpointed: Boolean

    Return whether this RDD has been checkpointed or not

    Return whether this RDD has been checkpointed or not

    Definition Classes
    RDD
  64. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  65. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  66. final def iterator(split: Partition, context: TaskContext): Iterator[Row]

    Internal method to this RDD; will read from cache if applicable, or otherwise compute it.

    Internal method to this RDD; will read from cache if applicable, or otherwise compute it. This should not be called by users directly, but is available for implementors of custom subclasses of RDD.

    Definition Classes
    RDD
  67. def join(otherPlan: SchemaRDD, joinType: JoinType = Inner, on: Option[Expression] = None): SchemaRDD

    Performs a relational join on two SchemaRDDs

    Performs a relational join on two SchemaRDDs

    otherPlan

    the SchemaRDD that should be joined with this one.

    joinType

    One of Inner, LeftOuter, RightOuter, or FullOuter. Defaults to Inner.

    on

    An optional condition for the join operation. This is equivalent to the ON clause in standard SQL. In the case of Inner joins, specifying a condition is equivalent to adding where clauses after the join.

  68. def keyBy[K](f: (Row) ⇒ K): RDD[(K, Row)]

    Creates tuples of the elements in this RDD by applying f.

    Creates tuples of the elements in this RDD by applying f.

    Definition Classes
    RDD
  69. def limit(limitNum: Int): SchemaRDD

    Limits the results by the given integer.

    Limits the results by the given integer.

    schemaRDD.limit(10)
  70. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  72. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  74. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  76. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  77. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  79. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  81. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  82. val logicalPlan: LogicalPlan

    Attributes
    protected[org.apache.spark]
    Definition Classes
    SchemaRDDLike
  83. def map[U](f: (Row) ⇒ U)(implicit arg0: ClassTag[U]): RDD[U]

    Return a new RDD by applying a function to all elements of this RDD.

    Return a new RDD by applying a function to all elements of this RDD.

    Definition Classes
    RDD
  84. def mapPartitions[U](f: (Iterator[Row]) ⇒ Iterator[U], preservesPartitioning: Boolean = false)(implicit arg0: ClassTag[U]): RDD[U]

    Return a new RDD by applying a function to each partition of this RDD.

    Return a new RDD by applying a function to each partition of this RDD.

    preservesPartitioning indicates whether the input function preserves the partitioner, which should be false unless this is a pair RDD and the input function doesn't modify the keys.

    Definition Classes
    RDD
  85. def mapPartitionsWithIndex[U](f: (Int, Iterator[Row]) ⇒ Iterator[U], preservesPartitioning: Boolean = false)(implicit arg0: ClassTag[U]): RDD[U]

    Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition.

    Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition.

    preservesPartitioning indicates whether the input function preserves the partitioner, which should be false unless this is a pair RDD and the input function doesn't modify the keys.

    Definition Classes
    RDD
  86. def max()(implicit ord: Ordering[Row]): Row

    Returns the max of this RDD as defined by the implicit Ordering[T].

    Returns the max of this RDD as defined by the implicit Ordering[T].

    returns

    the maximum element of the RDD

    Definition Classes
    RDD
  87. def min()(implicit ord: Ordering[Row]): Row

    Returns the min of this RDD as defined by the implicit Ordering[T].

    Returns the min of this RDD as defined by the implicit Ordering[T].

    returns

    the minimum element of the RDD

    Definition Classes
    RDD
  88. var name: String

    A friendly name for this RDD

    A friendly name for this RDD

    Definition Classes
    RDD
  89. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  90. final def notify(): Unit

    Definition Classes
    AnyRef
  91. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  92. def orderBy(sortExprs: SortOrder*): SchemaRDD

    Sorts the results by the given expressions.

    Sorts the results by the given expressions.

    schemaRDD.orderBy('a)
    schemaRDD.orderBy('a, 'b)
    schemaRDD.orderBy('a.asc, 'b.desc)
  93. def parent[U](j: Int)(implicit arg0: ClassTag[U]): RDD[U]

    Returns the jth parent RDD: e.

    Returns the jth parent RDD: e.g. rdd.parent[T](0) is equivalent to rdd.firstParent[T]

    Attributes
    protected[org.apache.spark]
    Definition Classes
    RDD
  94. val partitioner: Option[Partitioner]

    Optionally overridden by subclasses to specify how they are partitioned.

    Optionally overridden by subclasses to specify how they are partitioned.

    Definition Classes
    RDD
  95. final def partitions: Array[Partition]

    Get the array of partitions of this RDD, taking into account whether the RDD is checkpointed or not.

    Get the array of partitions of this RDD, taking into account whether the RDD is checkpointed or not.

    Definition Classes
    RDD
  96. def persist(newLevel: StorageLevel): SchemaRDD.this.type

    Set this RDD's storage level to persist its values across operations after the first time it is computed.

    Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet..

    Definition Classes
    SchemaRDDRDD
  97. def persist(): SchemaRDD.this.type

    Persist this RDD with the default storage level (MEMORY_ONLY).

    Persist this RDD with the default storage level (MEMORY_ONLY).

    Definition Classes
    RDD
  98. def pipe(command: Seq[String], env: Map[String, String] = Map(), printPipeContext: ((String) ⇒ Unit) ⇒ Unit = null, printRDDElement: (Row, (String) ⇒ Unit) ⇒ Unit = null, separateWorkingDir: Boolean = false): RDD[String]

    Return an RDD created by piping elements to a forked external process.

    Return an RDD created by piping elements to a forked external process. The print behavior can be customized by providing two functions.

    command

    command to run in forked process.

    env

    environment variables to set.

    printPipeContext

    Before piping elements, this function is called as an oppotunity to pipe context data. Print line function (like out.println) will be passed as printPipeContext's parameter.

    printRDDElement

    Use this function to customize how to pipe elements. This function will be called with each RDD element as the 1st parameter, and the print line function (like out.println()) as the 2nd parameter. An example of pipe the RDD data of groupBy() in a streaming way, instead of constructing a huge String to concat all the elements: def printRDDElement(record:(String, Seq[String]), f:String=>Unit) = for (e <- record._2){f(e)}

    separateWorkingDir

    Use separate working directories for each task.

    returns

    the result RDD

    Definition Classes
    RDD
  99. def pipe(command: String, env: Map[String, String]): RDD[String]

    Return an RDD created by piping elements to a forked external process.

    Return an RDD created by piping elements to a forked external process.

    Definition Classes
    RDD
  100. def pipe(command: String): RDD[String]

    Return an RDD created by piping elements to a forked external process.

    Return an RDD created by piping elements to a forked external process.

    Definition Classes
    RDD
  101. final def preferredLocations(split: Partition): Seq[String]

    Get the preferred locations of a partition, taking into account whether the RDD is checkpointed.

    Get the preferred locations of a partition, taking into account whether the RDD is checkpointed.

    Definition Classes
    RDD
  102. def printSchema(): Unit

    Prints out the schema.

    Prints out the schema.

    Definition Classes
    SchemaRDDLike
  103. lazy val queryExecution: QueryExecution

    :: DeveloperApi :: A lazily computed query execution workflow.

    :: DeveloperApi :: A lazily computed query execution workflow. All other RDD operations are passed through to the RDD that is produced by this workflow. This workflow is produced lazily because invoking the whole query optimization pipeline can be expensive.

    The query execution is considered a Developer API as phases may be added or removed in future releases. This execution is only exposed to provide an interface for inspecting the various phases for debugging purposes. Applications should not depend on particular phases existing or producing any specific output, even for exactly the same query.

    Additionally, the RDD exposed by this execution is not designed for consumption by end users. In particular, it does not contain any schema information, and it reuses Row objects internally. This object reuse improves performance, but can make programming against the RDD more difficult. Instead end users should perform RDD operations on a SchemaRDD directly.

    Definition Classes
    SchemaRDDLike
  104. def randomSplit(weights: Array[Double], seed: Long = Utils.random.nextLong): Array[RDD[Row]]

    Randomly splits this RDD with the provided weights.

    Randomly splits this RDD with the provided weights.

    weights

    weights for splits, will be normalized if they don't sum to 1

    seed

    random seed

    returns

    split RDDs in an array

    Definition Classes
    RDD
  105. def reduce(f: (Row, Row) ⇒ Row): Row

    Reduces the elements of this RDD using the specified commutative and associative binary operator.

    Reduces the elements of this RDD using the specified commutative and associative binary operator.

    Definition Classes
    RDD
  106. def registerTempTable(tableName: String): Unit

    Registers this RDD as a temporary table using the given name.

    Registers this RDD as a temporary table using the given name. The lifetime of this temporary table is tied to the SQLContext that was used to create this SchemaRDD.

    Definition Classes
    SchemaRDDLike
  107. def repartition(numPartitions: Int)(implicit ord: Ordering[Row] = null): SchemaRDD

    Return a new RDD that has exactly numPartitions partitions.

    Return a new RDD that has exactly numPartitions partitions.

    Can increase or decrease the level of parallelism in this RDD. Internally, this uses a shuffle to redistribute data.

    If you are decreasing the number of partitions in this RDD, consider using coalesce, which can avoid performing a shuffle.

    Definition Classes
    SchemaRDDRDD
  108. def sample(withReplacement: Boolean = true, fraction: Double, seed: Long): SchemaRDD

    :: Experimental :: Returns a sampled version of the underlying dataset.

    :: Experimental :: Returns a sampled version of the underlying dataset.

    Definition Classes
    SchemaRDDRDD
    Annotations
    @Experimental()
  109. def saveAsObjectFile(path: String): Unit

    Save this RDD as a SequenceFile of serialized objects.

    Save this RDD as a SequenceFile of serialized objects.

    Definition Classes
    RDD
  110. def saveAsParquetFile(path: String): Unit

    Saves the contents of this SchemaRDD as a parquet file, preserving the schema.

    Saves the contents of this SchemaRDD as a parquet file, preserving the schema. Files that are written out using this method can be read back in as a SchemaRDD using the parquetFile function.

    Definition Classes
    SchemaRDDLike
  111. def saveAsTable(tableName: String): Unit

    :: Experimental :: Creates a table from the the contents of this SchemaRDD.

    :: Experimental :: Creates a table from the the contents of this SchemaRDD. This will fail if the table already exists.

    Note that this currently only works with SchemaRDDs that are created from a HiveContext as there is no notion of a persisted catalog in a standard SQL context. Instead you can write an RDD out to a parquet file, and then register that file as a table. This "table" can then be the target of an insertInto.

    Definition Classes
    SchemaRDDLike
    Annotations
    @Experimental()
  112. def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec]): Unit

    Save this RDD as a compressed text file, using string representations of elements.

    Save this RDD as a compressed text file, using string representations of elements.

    Definition Classes
    RDD
  113. def saveAsTextFile(path: String): Unit

    Save this RDD as a text file, using string representations of elements.

    Save this RDD as a text file, using string representations of elements.

    Definition Classes
    RDD
  114. lazy val schema: StructType

    Returns the schema of this SchemaRDD (represented by a StructType).

  115. def schemaString: String

    Returns the schema as a string in the tree format.

    Returns the schema as a string in the tree format.

    Definition Classes
    SchemaRDDLike
  116. def select(exprs: Expression*): SchemaRDD

    Changes the output of this relation to the given expressions, similar to the SELECT clause in SQL.

    Changes the output of this relation to the given expressions, similar to the SELECT clause in SQL.

    schemaRDD.select('a, 'b + 'c, 'd as 'aliasedName)
    exprs

    a set of logical expression that will be evaluated for each input row.

  117. def setName(_name: String): SchemaRDD.this.type

    Assign a name to this RDD

    Assign a name to this RDD

    Definition Classes
    RDD
  118. def sortBy[K](f: (Row) ⇒ K, ascending: Boolean = true, numPartitions: Int = this.partitions.size)(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[Row]

    Return this RDD sorted by the given key function.

    Return this RDD sorted by the given key function.

    Definition Classes
    RDD
  119. def sparkContext: SparkContext

    The SparkContext that created this RDD.

    The SparkContext that created this RDD.

    Definition Classes
    RDD
  120. val sqlContext: SQLContext

    Definition Classes
    SchemaRDD → SchemaRDDLike
  121. def subtract(other: RDD[Row], p: Partitioner)(implicit ord: Ordering[Row] = null): SchemaRDD

    Return an RDD with the elements from this that are not in other.

    Return an RDD with the elements from this that are not in other.

    Definition Classes
    SchemaRDDRDD
  122. def subtract(other: RDD[Row], numPartitions: Int): SchemaRDD

    Return an RDD with the elements from this that are not in other.

    Return an RDD with the elements from this that are not in other.

    Definition Classes
    SchemaRDDRDD
  123. def subtract(other: RDD[Row]): SchemaRDD

    Return an RDD with the elements from this that are not in other.

    Return an RDD with the elements from this that are not in other.

    Uses this partitioner/partition size, because even if other is huge, the resulting RDD will be <= us.

    Definition Classes
    SchemaRDDRDD
  124. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  125. def take(num: Int): Array[Row]

    Take the first num elements of the RDD.

    Take the first num elements of the RDD. It works by first scanning one partition, and use the results from that partition to estimate the number of additional partitions needed to satisfy the limit.

    Definition Classes
    SchemaRDDRDD
  126. def takeOrdered(num: Int)(implicit ord: Ordering[Row]): Array[Row]

    Returns the first k (smallest) elements from this RDD as defined by the specified implicit Ordering[T] and maintains the ordering.

    Returns the first k (smallest) elements from this RDD as defined by the specified implicit Ordering[T] and maintains the ordering. This does the opposite of top. For example:

    sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)
    // returns Array(2)
    
    sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2)
    // returns Array(2, 3)
    num

    k, the number of elements to return

    ord

    the implicit ordering for T

    returns

    an array of top elements

    Definition Classes
    RDD
  127. def takeSample(withReplacement: Boolean, num: Int, seed: Long = Utils.random.nextLong): Array[Row]

    Return a fixed-size sampled subset of this RDD in an array

    Return a fixed-size sampled subset of this RDD in an array

    withReplacement

    whether sampling is done with replacement

    num

    size of the returned sample

    seed

    seed for the random number generator

    returns

    sample of specified size in an array

    Definition Classes
    RDD
  128. def toDebugString: String

    A description of this RDD and its recursive dependencies for debugging.

    A description of this RDD and its recursive dependencies for debugging.

    Definition Classes
    RDD
  129. def toJSON: RDD[String]

    Returns a new RDD with each row transformed to a JSON string.

  130. def toJavaRDD(): JavaRDD[Row]

    Definition Classes
    RDD
  131. def toJavaSchemaRDD: JavaSchemaRDD

    Returns this RDD as a JavaSchemaRDD.

  132. def toLocalIterator: Iterator[Row]

    Return an iterator that contains all of the elements in this RDD.

    Return an iterator that contains all of the elements in this RDD.

    The iterator will consume as much memory as the largest partition in this RDD.

    Definition Classes
    RDD
  133. def toSchemaRDD: SchemaRDD

    Returns this RDD as a SchemaRDD.

    Returns this RDD as a SchemaRDD. Intended primarily to force the invocation of the implicit conversion from a standard RDD to a SchemaRDD.

  134. def toString(): String

    Definition Classes
    SchemaRDDLike → AnyRef → Any
  135. def top(num: Int)(implicit ord: Ordering[Row]): Array[Row]

    Returns the top k (largest) elements from this RDD as defined by the specified implicit Ordering[T].

    Returns the top k (largest) elements from this RDD as defined by the specified implicit Ordering[T]. This does the opposite of takeOrdered. For example:

    sc.parallelize(Seq(10, 4, 2, 12, 3)).top(1)
    // returns Array(12)
    
    sc.parallelize(Seq(2, 3, 4, 5, 6)).top(2)
    // returns Array(6, 5)
    num

    k, the number of top elements to return

    ord

    the implicit ordering for T

    returns

    an array of top elements

    Definition Classes
    RDD
  136. def union(other: RDD[Row]): RDD[Row]

    Return the union of this RDD and another one.

    Return the union of this RDD and another one. Any identical elements will appear multiple times (use .distinct() to eliminate them).

    Definition Classes
    RDD
  137. def unionAll(otherPlan: SchemaRDD): SchemaRDD

    Combines the tuples of two RDDs with the same schema, keeping duplicates.

  138. def unpersist(blocking: Boolean): SchemaRDD.this.type

    Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

    Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

    blocking

    Whether to block until all blocks are deleted.

    returns

    This RDD.

    Definition Classes
    SchemaRDDRDD
  139. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  140. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  141. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  142. def where(dynamicUdf: (DynamicRow) ⇒ Boolean): SchemaRDD

    :: Experimental :: Filters tuples using a function over a Dynamic version of a given Row.

    :: Experimental :: Filters tuples using a function over a Dynamic version of a given Row. DynamicRows use scala's Dynamic trait to emulate an ORM of in a dynamically typed language. Since the type of the column is not known at compile time, all attributes are converted to strings before being passed to the function.

    schemaRDD.where(r => r.firstName == "Bob" && r.lastName == "Smith")
    Annotations
    @Experimental()
  143. def where[T1](arg1: Symbol)(udf: (T1) ⇒ Boolean): SchemaRDD

    Filters tuples using a function over the value of the specified column.

    Filters tuples using a function over the value of the specified column.

    schemaRDD.where('a)((a: Int) => ...)
  144. def where(condition: Expression): SchemaRDD

    Filters the output, only returning those rows where condition evaluates to true.

    Filters the output, only returning those rows where condition evaluates to true.

    schemaRDD.where('a === 'b)
    schemaRDD.where('a === 1)
    schemaRDD.where('a + 'b > 10)
  145. def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(Row, U)]

    Zips this RDD with another one, returning key-value pairs with the first element in each RDD, second element in each RDD, etc.

    Zips this RDD with another one, returning key-value pairs with the first element in each RDD, second element in each RDD, etc. Assumes that the two RDDs have the *same number of partitions* and the *same number of elements in each partition* (e.g. one was made through a map on the other).

    Definition Classes
    RDD
  146. def zipPartitions[B, C, D, V](rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D])(f: (Iterator[Row], Iterator[B], Iterator[C], Iterator[D]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[D], arg3: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  147. def zipPartitions[B, C, D, V](rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D], preservesPartitioning: Boolean)(f: (Iterator[Row], Iterator[B], Iterator[C], Iterator[D]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[D], arg3: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  148. def zipPartitions[B, C, V](rdd2: RDD[B], rdd3: RDD[C])(f: (Iterator[Row], Iterator[B], Iterator[C]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  149. def zipPartitions[B, C, V](rdd2: RDD[B], rdd3: RDD[C], preservesPartitioning: Boolean)(f: (Iterator[Row], Iterator[B], Iterator[C]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  150. def zipPartitions[B, V](rdd2: RDD[B])(f: (Iterator[Row], Iterator[B]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  151. def zipPartitions[B, V](rdd2: RDD[B], preservesPartitioning: Boolean)(f: (Iterator[Row], Iterator[B]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[V]): RDD[V]

    Zip this RDD's partitions with one (or more) RDD(s) and return a new RDD by applying a function to the zipped partitions.

    Zip this RDD's partitions with one (or more) RDD(s) and return a new RDD by applying a function to the zipped partitions. Assumes that all the RDDs have the *same number of partitions*, but does *not* require them to have the same number of elements in each partition.

    Definition Classes
    RDD
  152. def zipWithIndex(): RDD[(Row, Long)]

    Zips this RDD with its element indices.

    Zips this RDD with its element indices. The ordering is first based on the partition index and then the ordering of items within each partition. So the first item in the first partition gets index 0, and the last item in the last partition receives the largest index.

    This is similar to Scala's zipWithIndex but it uses Long instead of Int as the index type. This method needs to trigger a spark job when this RDD contains more than one partitions.

    Note that some RDDs, such as those returned by groupBy(), do not guarantee order of elements in a partition. The index assigned to each element is therefore not guaranteed, and may even change if the RDD is reevaluated. If a fixed ordering is required to guarantee the same index assignments, you should sort the RDD with sortByKey() or save it to a file.

    Definition Classes
    RDD
  153. def zipWithUniqueId(): RDD[(Row, Long)]

    Zips this RDD with generated unique Long ids.

    Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k, 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method won't trigger a spark job, which is different from org.apache.spark.rdd.RDD#zipWithIndex.

    Note that some RDDs, such as those returned by groupBy(), do not guarantee order of elements in a partition. The unique ID assigned to each element is therefore not guaranteed, and may even change if the RDD is reevaluated. If a fixed ordering is required to guarantee the same index assignments, you should sort the RDD with sortByKey() or save it to a file.

    Definition Classes
    RDD

Deprecated Value Members

  1. def filterWith[A](constructA: (Int) ⇒ A)(p: (Row, A) ⇒ Boolean): RDD[Row]

    Filters this RDD with p, where p takes an additional parameter of type A.

    Filters this RDD with p, where p takes an additional parameter of type A. This additional parameter is produced by constructA, which is called in each partition with the index of that partition.

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use mapPartitionsWithIndex and filter

  2. def flatMapWith[A, U](constructA: (Int) ⇒ A, preservesPartitioning: Boolean = false)(f: (Row, A) ⇒ Seq[U])(implicit arg0: ClassTag[U]): RDD[U]

    FlatMaps f over this RDD, where f takes an additional parameter of type A.

    FlatMaps f over this RDD, where f takes an additional parameter of type A. This additional parameter is produced by constructA, which is called in each partition with the index of that partition.

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use mapPartitionsWithIndex and flatMap

  3. def foreachWith[A](constructA: (Int) ⇒ A)(f: (Row, A) ⇒ Unit): Unit

    Applies f to each element of this RDD, where f takes an additional parameter of type A.

    Applies f to each element of this RDD, where f takes an additional parameter of type A. This additional parameter is produced by constructA, which is called in each partition with the index of that partition.

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use mapPartitionsWithIndex and foreach

  4. def limit(limitExpr: Expression): SchemaRDD

    Annotations
    @deprecated
    Deprecated

    (Since version 1.1.0) use limit with integer argument

  5. def mapPartitionsWithContext[U](f: (TaskContext, Iterator[Row]) ⇒ Iterator[U], preservesPartitioning: Boolean = false)(implicit arg0: ClassTag[U]): RDD[U]

    :: DeveloperApi :: Return a new RDD by applying a function to each partition of this RDD.

    :: DeveloperApi :: Return a new RDD by applying a function to each partition of this RDD. This is a variant of mapPartitions that also passes the TaskContext into the closure.

    preservesPartitioning indicates whether the input function preserves the partitioner, which should be false unless this is a pair RDD and the input function doesn't modify the keys.

    Definition Classes
    RDD
    Annotations
    @DeveloperApi() @deprecated
    Deprecated

    (Since version 1.2.0) use TaskContext.get

  6. def mapPartitionsWithSplit[U](f: (Int, Iterator[Row]) ⇒ Iterator[U], preservesPartitioning: Boolean = false)(implicit arg0: ClassTag[U]): RDD[U]

    Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition.

    Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition.

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 0.7.0) use mapPartitionsWithIndex

  7. def mapWith[A, U](constructA: (Int) ⇒ A, preservesPartitioning: Boolean = false)(f: (Row, A) ⇒ U)(implicit arg0: ClassTag[U]): RDD[U]

    Maps f over this RDD, where f takes an additional parameter of type A.

    Maps f over this RDD, where f takes an additional parameter of type A. This additional parameter is produced by constructA, which is called in each partition with the index of that partition.

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use mapPartitionsWithIndex

  8. def registerAsTable(tableName: String): Unit

    Definition Classes
    SchemaRDDLike
    Annotations
    @deprecated
    Deprecated

    (Since version 1.1) Use registerTempTable instead of registerAsTable.

  9. def toArray(): Array[Row]

    Return an array that contains all of the elements in this RDD.

    Return an array that contains all of the elements in this RDD.

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use collect

Inherited from SchemaRDDLike

Inherited from RDD[Row]

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Language Integrated Queries

Functions that create new queries from SchemaRDDs. The result of all query functions is also a SchemaRDD, allowing multiple operations to be chained using a builder pattern.

SchemaRDD Functions

Base RDD Functions