001/* 002 * Licensed under the Apache License, Version 2.0 (the "License"); 003 * you may not use this file except in compliance with the License. 004 * You may obtain a copy of the License at 005 * 006 * http://www.apache.org/licenses/LICENSE-2.0 007 * 008 * Unless required by applicable law or agreed to in writing, software 009 * distributed under the License is distributed on an "AS IS" BASIS, 010 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 011 * See the License for the specific language governing permissions and 012 * limitations under the License. 013 * under the License. 014 */ 015 016package org.apache.commons.imaging.formats.jpeg.decoder; 017 018import static org.apache.commons.imaging.common.BinaryFunctions.read2Bytes; 019import static org.apache.commons.imaging.common.BinaryFunctions.readBytes; 020 021import java.awt.image.BufferedImage; 022import java.awt.image.ColorModel; 023import java.awt.image.DataBuffer; 024import java.awt.image.DirectColorModel; 025import java.awt.image.Raster; 026import java.awt.image.WritableRaster; 027import java.io.ByteArrayInputStream; 028import java.io.IOException; 029import java.util.ArrayList; 030import java.util.Arrays; 031import java.util.List; 032import java.util.Properties; 033 034import org.apache.commons.imaging.ImagingException; 035import org.apache.commons.imaging.bytesource.ByteSource; 036import org.apache.commons.imaging.color.ColorConversions; 037import org.apache.commons.imaging.common.Allocator; 038import org.apache.commons.imaging.common.BinaryFileParser; 039import org.apache.commons.imaging.formats.jpeg.JpegConstants; 040import org.apache.commons.imaging.formats.jpeg.JpegUtils; 041import org.apache.commons.imaging.formats.jpeg.segments.DhtSegment; 042import org.apache.commons.imaging.formats.jpeg.segments.DhtSegment.HuffmanTable; 043import org.apache.commons.imaging.formats.jpeg.segments.DqtSegment; 044import org.apache.commons.imaging.formats.jpeg.segments.DqtSegment.QuantizationTable; 045import org.apache.commons.imaging.formats.jpeg.segments.SofnSegment; 046import org.apache.commons.imaging.formats.jpeg.segments.SosSegment; 047 048public class JpegDecoder extends BinaryFileParser implements JpegUtils.Visitor { 049 050 private static final int[] BAND_MASK_ARGB = { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }; 051 private static final int[] BAND_MASK_RGB = { 0x00ff0000, 0x0000ff00, 0x000000ff }; 052 053 /* 054 * JPEG is an advanced image format that takes significant computation to decode. Keep decoding fast: - Don't allocate memory inside loops, allocate it once 055 * and reuse. - Minimize calculations per pixel and per block (using lookup tables for YCbCr->RGB conversion doubled performance). - Math.round() is slow, 056 * use (int)(x+0.5f) instead for positive numbers. 057 */ 058 059 private static int fastRound(final float x) { 060 return (int) (x + 0.5f); 061 } 062 063 /** 064 * Returns the positions of where each interval in the provided array starts. The number of start positions is also the count of intervals while the number 065 * of restart markers found is equal to the number of start positions minus one (because restart markers are between intervals). 066 * 067 * @param scanPayload array to examine 068 * @return the start positions 069 */ 070 static List<Integer> getIntervalStartPositions(final int[] scanPayload) { 071 final List<Integer> intervalStarts = new ArrayList<>(); 072 intervalStarts.add(0); 073 boolean foundFF = false; 074 boolean foundD0toD7 = false; 075 int pos = 0; 076 while (pos < scanPayload.length) { 077 if (foundFF) { 078 // found 0xFF D0 .. 0xFF D7 => RST marker 079 if (scanPayload[pos] >= (0xff & JpegConstants.RST0_MARKER) && scanPayload[pos] <= (0xff & JpegConstants.RST7_MARKER)) { 080 foundD0toD7 = true; 081 } else { // found 0xFF followed by something else => no RST marker 082 foundFF = false; 083 } 084 } 085 086 if (scanPayload[pos] == 0xFF) { 087 foundFF = true; 088 } 089 090 // true if one of the RST markers was found 091 if (foundFF && foundD0toD7) { 092 // we need to add the position after the current position because 093 // we had already read 0xFF and are now at 0xDn 094 intervalStarts.add(pos + 1); 095 foundFF = foundD0toD7 = false; 096 } 097 pos++; 098 } 099 return intervalStarts; 100 } 101 102 /** 103 * Returns an array of JpegInputStream where each field contains the JpegInputStream for one interval. 104 * 105 * @param scanPayload array to read intervals from 106 * @return JpegInputStreams for all intervals, at least one stream is always provided 107 */ 108 static JpegInputStream[] splitByRstMarkers(final int[] scanPayload) { 109 final List<Integer> intervalStarts = getIntervalStartPositions(scanPayload); 110 // get number of intervals in payload to init an array of appropriate length 111 final int intervalCount = intervalStarts.size(); 112 final JpegInputStream[] streams = Allocator.array(intervalCount, JpegInputStream[]::new, JpegInputStream.SHALLOW_SIZE); 113 for (int i = 0; i < intervalCount; i++) { 114 final int from = intervalStarts.get(i); 115 int to; 116 if (i < intervalCount - 1) { 117 // because each restart marker needs two bytes the end of 118 // this interval is two bytes before the next interval starts 119 to = intervalStarts.get(i + 1) - 2; 120 } else { // the last interval ends with the array 121 to = scanPayload.length; 122 } 123 final int[] interval = Arrays.copyOfRange(scanPayload, from, to); 124 streams[i] = new JpegInputStream(interval); 125 } 126 return streams; 127 } 128 129 private final DqtSegment.QuantizationTable[] quantizationTables = new DqtSegment.QuantizationTable[4]; 130 private final DhtSegment.HuffmanTable[] huffmanDCTables = new DhtSegment.HuffmanTable[4]; 131 private final DhtSegment.HuffmanTable[] huffmanACTables = new DhtSegment.HuffmanTable[4]; 132 private SofnSegment sofnSegment; 133 private SosSegment sosSegment; 134 private final float[][] scaledQuantizationTables = new float[4][]; 135 private BufferedImage image; 136 private ImagingException imageReadException; 137 private IOException ioException; 138 139 private final int[] zz = new int[64]; 140 141 private final int[] blockInt = new int[64]; 142 143 private final float[] block = new float[64]; 144 145 private boolean useTiffRgb; 146 147 private Block[] allocateMcuMemory() throws ImagingException { 148 final Block[] mcu = Allocator.array(sosSegment.numberOfComponents, Block[]::new, Block.SHALLOW_SIZE); 149 for (int i = 0; i < sosSegment.numberOfComponents; i++) { 150 final SosSegment.Component scanComponent = sosSegment.getComponents(i); 151 SofnSegment.Component frameComponent = null; 152 for (int j = 0; j < sofnSegment.numberOfComponents; j++) { 153 if (sofnSegment.getComponents(j).componentIdentifier == scanComponent.scanComponentSelector) { 154 frameComponent = sofnSegment.getComponents(j); 155 break; 156 } 157 } 158 if (frameComponent == null) { 159 throw new ImagingException("Invalid component"); 160 } 161 final Block fullBlock = new Block(8 * frameComponent.horizontalSamplingFactor, 8 * frameComponent.verticalSamplingFactor); 162 mcu[i] = fullBlock; 163 } 164 return mcu; 165 } 166 167 @Override 168 public boolean beginSos() { 169 return true; 170 } 171 172 public BufferedImage decode(final ByteSource byteSource) throws IOException, ImagingException { 173 final JpegUtils jpegUtils = new JpegUtils(); 174 jpegUtils.traverseJfif(byteSource, this); 175 if (imageReadException != null) { 176 throw imageReadException; 177 } 178 if (ioException != null) { 179 throw ioException; 180 } 181 return image; 182 } 183 184 private int decode(final JpegInputStream is, final DhtSegment.HuffmanTable huffmanTable) throws ImagingException { 185 // "DECODE", section F.2.2.3, figure F.16, page 109 of T.81 186 int i = 1; 187 int code = is.nextBit(); 188 while (code > huffmanTable.getMaxCode(i)) { 189 i++; 190 code = code << 1 | is.nextBit(); 191 } 192 int j = huffmanTable.getValPtr(i); 193 j += code - huffmanTable.getMinCode(i); 194 return huffmanTable.getHuffVal(j); 195 } 196 197 private int extend(int v, final int t) { 198 // "EXTEND", section F.2.2.1, figure F.12, page 105 of T.81 199 int vt = 1 << t - 1; 200 if (v < vt) { 201 vt = (-1 << t) + 1; 202 v += vt; 203 } 204 return v; 205 } 206 207 private void readMcu(final JpegInputStream is, final int[] preds, final Block[] mcu) throws ImagingException { 208 for (int i = 0; i < sosSegment.numberOfComponents; i++) { 209 final SosSegment.Component scanComponent = sosSegment.getComponents(i); 210 SofnSegment.Component frameComponent = null; 211 for (int j = 0; j < sofnSegment.numberOfComponents; j++) { 212 if (sofnSegment.getComponents(j).componentIdentifier == scanComponent.scanComponentSelector) { 213 frameComponent = sofnSegment.getComponents(j); 214 break; 215 } 216 } 217 if (frameComponent == null) { 218 throw new ImagingException("Invalid component"); 219 } 220 final Block fullBlock = mcu[i]; 221 for (int y = 0; y < frameComponent.verticalSamplingFactor; y++) { 222 for (int x = 0; x < frameComponent.horizontalSamplingFactor; x++) { 223 Arrays.fill(zz, 0); 224 // page 104 of T.81 225 final int t = decode(is, huffmanDCTables[scanComponent.dcCodingTableSelector]); 226 int diff = receive(t, is); 227 diff = extend(diff, t); 228 zz[0] = preds[i] + diff; 229 preds[i] = zz[0]; 230 231 // "Decode_AC_coefficients", figure F.13, page 106 of T.81 232 int k = 1; 233 while (true) { 234 final int rs = decode(is, huffmanACTables[scanComponent.acCodingTableSelector]); 235 final int ssss = rs & 0xf; 236 final int rrrr = rs >> 4; 237 final int r = rrrr; 238 239 if (ssss == 0) { 240 if (r != 15) { 241 break; 242 } 243 k += 16; 244 } else { 245 k += r; 246 247 // "Decode_ZZ(k)", figure F.14, page 107 of T.81 248 zz[k] = receive(ssss, is); 249 zz[k] = extend(zz[k], ssss); 250 251 if (k == 63) { 252 break; 253 } 254 k++; 255 } 256 } 257 258 final int shift = 1 << sofnSegment.precision - 1; 259 final int max = (1 << sofnSegment.precision) - 1; 260 261 final float[] scaledQuantizationTable = scaledQuantizationTables[frameComponent.quantTabDestSelector]; 262 ZigZag.zigZagToBlock(zz, blockInt); 263 for (int j = 0; j < 64; j++) { 264 block[j] = blockInt[j] * scaledQuantizationTable[j]; 265 } 266 Dct.inverseDct8x8(block); 267 268 int dstRowOffset = 8 * y * 8 * frameComponent.horizontalSamplingFactor + 8 * x; 269 int srcNext = 0; 270 for (int yy = 0; yy < 8; yy++) { 271 for (int xx = 0; xx < 8; xx++) { 272 float sample = block[srcNext++]; 273 sample += shift; 274 int result; 275 if (sample < 0) { 276 result = 0; 277 } else if (sample > max) { 278 result = max; 279 } else { 280 result = fastRound(sample); 281 } 282 fullBlock.samples[dstRowOffset + xx] = result; 283 } 284 dstRowOffset += 8 * frameComponent.horizontalSamplingFactor; 285 } 286 } 287 } 288 } 289 } 290 291 private int receive(final int ssss, final JpegInputStream is) throws ImagingException { 292 // "RECEIVE", section F.2.2.4, figure F.17, page 110 of T.81 293 int i = 0; 294 int v = 0; 295 while (i != ssss) { 296 i++; 297 v = (v << 1) + is.nextBit(); 298 } 299 return v; 300 } 301 302 private void rescaleMcu(final Block[] dataUnits, final int hSize, final int vSize, final Block[] ret) { 303 for (int i = 0; i < dataUnits.length; i++) { 304 final Block dataUnit = dataUnits[i]; 305 if (dataUnit.width == hSize && dataUnit.height == vSize) { 306 System.arraycopy(dataUnit.samples, 0, ret[i].samples, 0, hSize * vSize); 307 } else { 308 final int hScale = hSize / dataUnit.width; 309 final int vScale = vSize / dataUnit.height; 310 if (hScale == 2 && vScale == 2) { 311 int srcRowOffset = 0; 312 int dstRowOffset = 0; 313 for (int y = 0; y < dataUnit.height; y++) { 314 for (int x = 0; x < hSize; x++) { 315 final int sample = dataUnit.samples[srcRowOffset + (x >> 1)]; 316 ret[i].samples[dstRowOffset + x] = sample; 317 ret[i].samples[dstRowOffset + hSize + x] = sample; 318 } 319 srcRowOffset += dataUnit.width; 320 dstRowOffset += 2 * hSize; 321 } 322 } else { 323 // FIXME: optimize 324 int dstRowOffset = 0; 325 for (int y = 0; y < vSize; y++) { 326 for (int x = 0; x < hSize; x++) { 327 ret[i].samples[dstRowOffset + x] = dataUnit.samples[y / vScale * dataUnit.width + x / hScale]; 328 } 329 dstRowOffset += hSize; 330 } 331 } 332 } 333 } 334 } 335 336 /** 337 * Sets the decoder to treat incoming data as using the RGB color model. This extension to the JPEG specification is intended to support TIFF files that use 338 * JPEG compression. 339 */ 340 public void setTiffRgb() { 341 useTiffRgb = true; 342 } 343 344 @Override 345 public boolean visitSegment(final int marker, final byte[] markerBytes, final int segmentLength, final byte[] segmentLengthBytes, final byte[] segmentData) 346 throws ImagingException, IOException { 347 final int[] sofnSegments = { JpegConstants.SOF0_MARKER, JpegConstants.SOF1_MARKER, JpegConstants.SOF2_MARKER, JpegConstants.SOF3_MARKER, 348 JpegConstants.SOF5_MARKER, JpegConstants.SOF6_MARKER, JpegConstants.SOF7_MARKER, JpegConstants.SOF9_MARKER, JpegConstants.SOF10_MARKER, 349 JpegConstants.SOF11_MARKER, JpegConstants.SOF13_MARKER, JpegConstants.SOF14_MARKER, JpegConstants.SOF15_MARKER, }; 350 351 if (Arrays.binarySearch(sofnSegments, marker) >= 0) { 352 if (marker != JpegConstants.SOF0_MARKER) { 353 throw new ImagingException("Only sequential, baseline JPEGs " + "are supported at the moment"); 354 } 355 sofnSegment = new SofnSegment(marker, segmentData); 356 } else if (marker == JpegConstants.DQT_MARKER) { 357 final DqtSegment dqtSegment = new DqtSegment(marker, segmentData); 358 for (final QuantizationTable table : dqtSegment.quantizationTables) { 359 if (0 > table.destinationIdentifier || table.destinationIdentifier >= quantizationTables.length) { 360 throw new ImagingException("Invalid quantization table identifier " + table.destinationIdentifier); 361 } 362 quantizationTables[table.destinationIdentifier] = table; 363 final int mSize = 64; 364 final int[] quantizationMatrixInt = Allocator.intArray(mSize); 365 ZigZag.zigZagToBlock(table.getElements(), quantizationMatrixInt); 366 final float[] quantizationMatrixFloat = Allocator.floatArray(mSize); 367 for (int j = 0; j < mSize; j++) { 368 quantizationMatrixFloat[j] = quantizationMatrixInt[j]; 369 } 370 Dct.scaleDequantizationMatrix(quantizationMatrixFloat); 371 scaledQuantizationTables[table.destinationIdentifier] = quantizationMatrixFloat; 372 } 373 } else if (marker == JpegConstants.DHT_MARKER) { 374 final DhtSegment dhtSegment = new DhtSegment(marker, segmentData); 375 for (final HuffmanTable table : dhtSegment.huffmanTables) { 376 DhtSegment.HuffmanTable[] tables; 377 if (table.tableClass == 0) { 378 tables = huffmanDCTables; 379 } else if (table.tableClass == 1) { 380 tables = huffmanACTables; 381 } else { 382 throw new ImagingException("Invalid huffman table class " + table.tableClass); 383 } 384 if (0 > table.destinationIdentifier || table.destinationIdentifier >= tables.length) { 385 throw new ImagingException("Invalid huffman table identifier " + table.destinationIdentifier); 386 } 387 tables[table.destinationIdentifier] = table; 388 } 389 } 390 return true; 391 } 392 393 @Override 394 public void visitSos(final int marker, final byte[] markerBytes, final byte[] imageData) { 395 try (ByteArrayInputStream is = new ByteArrayInputStream(imageData)) { 396 // read the scan header 397 final int segmentLength = read2Bytes("segmentLength", is, "Not a Valid JPEG File", getByteOrder()); 398 final byte[] sosSegmentBytes = readBytes("SosSegment", is, segmentLength - 2, "Not a Valid JPEG File"); 399 sosSegment = new SosSegment(marker, sosSegmentBytes); 400 // read the payload of the scan, this is the remainder of image data after the header 401 // the payload contains the entropy-encoded segments (or ECS) divided by RST markers 402 // or only one ECS if the entropy-encoded data is not divided by RST markers 403 // length of payload = length of image data - length of data already read 404 final int[] scanPayload = Allocator.intArray(imageData.length - segmentLength); 405 int payloadReadCount = 0; 406 while (payloadReadCount < scanPayload.length) { 407 scanPayload[payloadReadCount] = is.read(); 408 payloadReadCount++; 409 } 410 411 int hMax = 0; 412 int vMax = 0; 413 for (int i = 0; i < sofnSegment.numberOfComponents; i++) { 414 hMax = Math.max(hMax, sofnSegment.getComponents(i).horizontalSamplingFactor); 415 vMax = Math.max(vMax, sofnSegment.getComponents(i).verticalSamplingFactor); 416 } 417 final int hSize = 8 * hMax; 418 final int vSize = 8 * vMax; 419 420 final int xMCUs = (sofnSegment.width + hSize - 1) / hSize; 421 final int yMCUs = (sofnSegment.height + vSize - 1) / vSize; 422 final Block[] mcu = allocateMcuMemory(); 423 final Block[] scaledMCU = Allocator.array(mcu.length, Block[]::new, Block.SHALLOW_SIZE); 424 Arrays.setAll(scaledMCU, i -> new Block(hSize, vSize)); 425 final int[] preds = Allocator.intArray(sofnSegment.numberOfComponents); 426 ColorModel colorModel; 427 WritableRaster raster; 428 Allocator.check(Integer.BYTES * sofnSegment.width * sofnSegment.height); 429 switch (sofnSegment.numberOfComponents) { 430 case 4: 431 // Special handling for the application-RGB case: TIFF files with 432 // JPEG compression can support an alpha channel. This extension 433 // to the JPEG standard is implemented by specifying a color model 434 // with a fourth channel for alpha. 435 if (useTiffRgb) { 436 colorModel = new DirectColorModel(32, 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000); 437 raster = Raster.createPackedRaster(DataBuffer.TYPE_INT, sofnSegment.width, sofnSegment.height, BAND_MASK_ARGB, null); 438 } else { 439 colorModel = new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff); 440 raster = Raster.createPackedRaster(DataBuffer.TYPE_INT, sofnSegment.width, sofnSegment.height, BAND_MASK_RGB, null); 441 } 442 443 break; 444 case 3: 445 colorModel = new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff); 446 raster = Raster.createPackedRaster(DataBuffer.TYPE_INT, sofnSegment.width, sofnSegment.height, new int[] { 0x00ff0000, 0x0000ff00, 0x000000ff }, 447 null); 448 break; 449 case 1: 450 colorModel = new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff); 451 raster = Raster.createPackedRaster(DataBuffer.TYPE_INT, sofnSegment.width, sofnSegment.height, new int[] { 0x00ff0000, 0x0000ff00, 0x000000ff }, 452 null); 453 // FIXME: why do images come out too bright with CS_GRAY? 454 // colorModel = new ComponentColorModel( 455 // ColorSpace.getInstance(ColorSpace.CS_GRAY), false, true, 456 // Transparency.OPAQUE, DataBuffer.TYPE_BYTE); 457 // raster = colorModel.createCompatibleWritableRaster( 458 // sofnSegment.width, sofnSegment.height); 459 break; 460 default: 461 throw new ImagingException(sofnSegment.numberOfComponents + " components are invalid or unsupported"); 462 } 463 final DataBuffer dataBuffer = raster.getDataBuffer(); 464 465 final JpegInputStream[] bitInputStreams = splitByRstMarkers(scanPayload); 466 int bitInputStreamCount = 0; 467 JpegInputStream bitInputStream = bitInputStreams[0]; 468 469 for (int y1 = 0; y1 < vSize * yMCUs; y1 += vSize) { 470 for (int x1 = 0; x1 < hSize * xMCUs; x1 += hSize) { 471 // Provide the next interval if an interval is read until it's end 472 // as long there are unread intervals available 473 if (!bitInputStream.hasNext()) { 474 bitInputStreamCount++; 475 if (bitInputStreamCount < bitInputStreams.length) { 476 bitInputStream = bitInputStreams[bitInputStreamCount]; 477 } 478 } 479 480 readMcu(bitInputStream, preds, mcu); 481 rescaleMcu(mcu, hSize, vSize, scaledMCU); 482 int srcRowOffset = 0; 483 int dstRowOffset = y1 * sofnSegment.width + x1; 484 485 // The TIFF-RGB logic was adapted from the original x2,y2 loops 486 // but special handling was added for TIFF-JPEG RGB colorspace 487 // and conditional checks were reorganized for efficiency 488 if (useTiffRgb && (scaledMCU.length == 3 || scaledMCU.length == 4)) { 489 // The original (legacy) coding for the x2 and y2 loop was: 490 // for(y2 = 0; y2 < vSize && y1 + y2 < sofnSegment.height; y2++) 491 // for(x2 = 0; x2 < hSize && x1 + x2 < sofnSegment.width; x2++) 492 // Here, we pre-compute the limits of the loop to reduce the 493 // overhead for the loop conditional evaluation. 494 final int x2Limit; 495 if (x1 + hSize <= sofnSegment.width) { 496 x2Limit = hSize; 497 } else { 498 x2Limit = sofnSegment.width - x1; 499 } 500 final int y2Limit; 501 if (y1 + vSize <= sofnSegment.height) { 502 y2Limit = vSize; 503 } else { 504 y2Limit = sofnSegment.height - y1; 505 } 506 507 if (scaledMCU.length == 4) { 508 // RGBA colorspace 509 // Although conventional JPEGs don't include an alpha channel 510 // TIFF images that use JPEG encoding may do so. For example, 511 // we have seen this variation in some false-color satellite images 512 // from the U.S. National Weather Service. Ordinary JPEG files 513 // may include an APP14 marker of type Unknowm indicating that 514 // the scaledMCU.length of 3 should be interpreted as the RGB colorspace 515 // and the 4-channel variation is interpreted as CYMK. But TIFF files 516 // use their own tags to specify colorspace and do not include the APP14 marker. 517 for (int y2 = 0; y2 < y2Limit; y2++) { 518 for (int x2 = 0; x2 < x2Limit; x2++) { 519 final int r = scaledMCU[0].samples[srcRowOffset + x2]; 520 final int g = scaledMCU[1].samples[srcRowOffset + x2]; 521 final int b = scaledMCU[2].samples[srcRowOffset + x2]; 522 final int a = scaledMCU[3].samples[srcRowOffset + x2]; 523 final int rgb = a << 24 | r << 16 | g << 8 | b; 524 dataBuffer.setElem(dstRowOffset + x2, rgb); 525 } 526 srcRowOffset += hSize; 527 dstRowOffset += sofnSegment.width; 528 } 529 } else { 530 // scaledMCU.length == 3, standard RGB 531 for (int y2 = 0; y2 < y2Limit; y2++) { 532 for (int x2 = 0; x2 < x2Limit; x2++) { 533 final int r = scaledMCU[0].samples[srcRowOffset + x2]; 534 final int g = scaledMCU[1].samples[srcRowOffset + x2]; 535 final int b = scaledMCU[2].samples[srcRowOffset + x2]; 536 final int rgb = r << 16 | g << 8 | b; 537 dataBuffer.setElem(dstRowOffset + x2, rgb); 538 } 539 srcRowOffset += hSize; 540 dstRowOffset += sofnSegment.width; 541 } 542 } 543 } else { 544 for (int y2 = 0; y2 < vSize && y1 + y2 < sofnSegment.height; y2++) { 545 for (int x2 = 0; x2 < hSize && x1 + x2 < sofnSegment.width; x2++) { 546 if (scaledMCU.length == 4) { 547 final int c = scaledMCU[0].samples[srcRowOffset + x2]; 548 final int m = scaledMCU[1].samples[srcRowOffset + x2]; 549 final int y = scaledMCU[2].samples[srcRowOffset + x2]; 550 final int k = scaledMCU[3].samples[srcRowOffset + x2]; 551 final int rgb = ColorConversions.convertCmykToRgb(c, m, y, k); 552 dataBuffer.setElem(dstRowOffset + x2, rgb); 553 } else if (scaledMCU.length == 3) { 554 final int y = scaledMCU[0].samples[srcRowOffset + x2]; 555 final int cb = scaledMCU[1].samples[srcRowOffset + x2]; 556 final int cr = scaledMCU[2].samples[srcRowOffset + x2]; 557 final int rgb = YCbCrConverter.convertYCbCrToRgb(y, cb, cr); 558 dataBuffer.setElem(dstRowOffset + x2, rgb); 559 } else if (mcu.length == 1) { 560 final int y = scaledMCU[0].samples[srcRowOffset + x2]; 561 dataBuffer.setElem(dstRowOffset + x2, y << 16 | y << 8 | y); 562 } else { 563 throw new ImagingException("Unsupported JPEG with " + mcu.length + " components"); 564 } 565 } 566 srcRowOffset += hSize; 567 dstRowOffset += sofnSegment.width; 568 } 569 } 570 } 571 } 572 image = new BufferedImage(colorModel, raster, colorModel.isAlphaPremultiplied(), new Properties()); 573 // byte[] remainder = super.getStreamBytes(is); 574 // for (int i = 0; i < remainder.length; i++) 575 // { 576 // System.out.println("" + i + " = " + 577 // Integer.toHexString(remainder[i])); 578 // } 579 } catch (final ImagingException imageReadEx) { 580 imageReadException = imageReadEx; 581 } catch (final IOException ioEx) { 582 ioException = ioEx; 583 } catch (final RuntimeException ex) { 584 // Corrupt images can throw NPE and IOOBE 585 imageReadException = new ImagingException("Error parsing JPEG", ex); 586 } 587 } 588}