
Emerging User Interfaces through First-Class Viewers

Rick Mugridge, Mitra Nataraj, Darryl Singh
Department of Computer Science,

University of Auckland,
New Zealand

r.mugridge@auckland.ac.nz, {mnat010,dsin038}@ec.auckland.ac.nz

ABSTRACT
User interfaces for most applications are fixed, so that users
have little individual control over how they can view and
manipulate information. Our aim is to provide a general
framework in which sophisticated users can tailor their user
interfaces to suit their evolving needs.
This work is layered on the Naked Objects framework [11],
which generates expressive user interfaces automatically
from augmented JavaBean objects. We have added viewers
as first-class objects, to allow an end-user or a developer to
select from a range of general-purpose viewers and
compose them to create tailored user interfaces. This
empowers the user to organise their interactions in ways
that most suit their current tasks, allowing for emergent
user interface design.

Keywords
User interfaces, model-based UI, expressive systems

INTRODUCTION
Pawson has argued persuasively for the development of
expressive systems, which empower users through
exposing the underlying objects and their methods [10]. He
argues that many user interfaces script the interactions with
the users, forcing them to be "process followers" and
preventing them from carrying out tasks which have not
been explicitly allowed for in the user interface design.
We go a step further and argue that sophisticated users
need to be able to control the form of their interaction with
a system as well. While many users don't wish to change
their user interfaces, others will do so if it is
straightforward. There are several reasons for tailoring
interaction:

• Shrink-wrapped software can become bloated as it
is extended to suit a wide range of use. Users find
that they have to traverse through multiple tabs
and dialogs in order to carry out simple tasks. The
"user model" becomes one of finding a way
through the confusion. Tailoring the interface to
avoid the unneeded detail would be helpful.

• Once a stable software system has been used for
some time, changes in the tasks being carried out
will evolve, making the interface less convenient
to use.

• With the Naked Objects framework, it is possible
to mix several applications together. For example,
it would be convenient to allow references to
email messages to be included in to-do lists. New
user interface elements need to be composed from
existing ones.

In traditional approaches to software development,
requirements, user and task definition, software design,
coding and testing are carried out at different times by
specialists who attempt to communicate through various
forms of documentation. Extreme Programming advocates
a very different approach, with the iterative development of
software, driven by the needs of users [1]. The various
phases of traditional software development are carried out
most of the time in Extreme Programming, with testing
playing a much earlier role [2, 9]. However, the role of
HCI specialists has been unclear in XP.
We argue that the appropriate time to design the user
interface is once an essential system has evolved through
one or more XP iterations. As some of the objects of the
system begin to stabilise, the focus can shift to user
interaction with those objects. As users on the XP team
trial the current system through a simple interface, the need
for more sophisticated presentations and interactions will
become clearer and they can evolve.
However, there is no reason to stop considering the
interaction needs of users once the system is complete.
Some users may wish to continue to tailor their interaction
as their use of the system evolves, and to share their
tailored interfaces with others.
The remainder of the paper is organised as follows. We
introduce the Naked Objects approach in the next Section.
Sections 3 and 4 introduces first-class viewers and show
how they can be used. We follow with a general discussion
of viewers and our future work. Related work is covered in
Section 6. The final section concludes.

NAKED OBJECTS
The Naked Objects framework makes it easy to build an
application without early concern for the user interface.
There is a strong focus on the domain objects of interest to
the users and the actions that they wish to carry out.

The framework defines how JavaBean classes in Java can
be augmented so that a user interface can be created
automatically from naked objects. Provision is made for a
range of UI. A basic GUI is provided with the framework
that allows the user to create, view, change and call
methods on the (naked) objects of domain-level classes that
are made visible to the user. A web-based interface to the
framework is also under development.
We illustrate the use of the basic GUI for Naked Objects
through TimeKeeper, an example application that we
developed to help drive the evolution of our general-
purpose viewers. For example, Fig. 1 shows a Project
object viewed through the basic GUI. It shows several
textual and numeric fields which can be edited and two
collections of objects (People and Tasks).

Figure 1. A Project object shown by the Basic GUI

The first collection is a list of the People that are associated
with the Project. Other People objects may be added to the
collection by drag and dropping them onto the dot at the
bottom of the collection. Double-clicking on an embedded
object shows the details of that object in place. Dragging
the icon of an embedded object on to the desktop creates a
new window that displays a view for that naked object. For
example, the first Task in the second collection from Fig. 1
is shown in Fig. 2.
Fig. 2 also shows that actions of a naked object may be
carried out through a popup menu provided by the basic
GUI. For example, the Start Time... menu item calls a
method that creates a WorkPeriod instance which records
the elapsed time until the user stops the timer.
The Naked Objects framework extends the conventions of
JavaBeans with information that aids the auto-generation of
a user interface. A domain class that is to be visible to the
user implements the Java interface NakedObject; it may do
this by extending the abstract class AbstractNakedObject.
An instance of a naked object may be shown in a window
in the basic GUI.

Figure 2. Popup Menu in the Basic GUI

A Naked Object field is a JavaBean property that contains a
reference to another NakedObject, to a collection of a
specific subtype of NakedObject or to a NakedValue. Drag
and drop may be used by the user to associate naked
objects. There are several subtypes of NakedValue for
TextString, Date, Money, etc. These manage display and
input validation, and may be read-only.
A Naked Object action is a method in a class N whose
identifier begins with 'action' and which take either zero or
one arguments:

• An action with zero arguments is accessible to the
user through the popup menu. It is called when the
user selects the corresponding menu item.

• An action with a single NakedObject argument is
accessible to the user through drag and drop.
When an object of the argument type A is dropped
on to an object of class N, the action method of the
N object is called with the A object as argument.

An action method may be void or may return a
NakedObject as value. In the latter case, the returned
object is displayed by the basic GUI in a window.
The framework manages bi-directional associations
between Naked Objects. For example, when a Task is
dropped onto the Tasks collection field of a Project, the
Project field of the WorkingTask is updated to refer to that
project.
Automatic persistence of naked objects is provided in
various forms, including in relational databases, XML,
EJBs and Prevayler, an in-memory object database [13].
While the basic GUI is likely to be fine for many tasks, it is
often useful to have specialised ways of viewing data and
acting on it. For example, in TimeKeeper tasks may be
scheduled. A calendar provides a convenient way of
viewing a subset of information about the tasks for a
particular time period, far superior to looking at a list of
tasks.

VIEWERS
We started by building a few specialised viewers for
TimeKeeper. A calendar viewer is shown in Fig. 3.

Figure 3. Calendar viewer

This viewer takes a Person object and highlights those days
where one or more tasks are scheduled. On dragging any
day on to the desk top, a tabular viewer shows the tasks
scheduled in each hour, as shown in Fig 4. New tasks may
be added by entering them into this table or through the
basic Naked Objects GUI.

Figure 4. Daily Viewer

GENERAL-PURPOSE VIEWERS
After exploring various specialised viewers for
TimeKeeper, we generalised some of them into viewers
that could be applied to a wider range of naked objects.

Tables
A Table viewer was defined as a generalisation of the daily
view in TimeKeeper. This shows the collections of a naked
object in a tabular form. For example, a tabular viewer for
a subset of the fields of a Project is shown in Fig. 5.

Figure 5. Table Viewer of a Project

When a naked object from the basic GUI is dropped onto a
table viewer, the user is able to configure the viewer. They
choose the information to be shown in the table by
selecting the subset of fields of the elements of the
collection that are to be shown in the columns.
Changes to the field data may be made through the
resulting table viewer and are reflected in the basic GUI
(through the underlying naked objects) and vice versa. An
element of the table may be dragged out from the table and
on to the desk top; it is then shown using the basic GUI.
All of the collections of a naked object are shown in the
table window, with a tab for each. This is because the
basic GUI does not permit collections to be dragged around
independently.
Configuration of the table is carried out through a naked
object. After developing other viewers, we found that it
was more convenient for the user to be able to also
configure the viewer directly, rather than having to go
through the basic GUI of a separate configuration object.
While this table viewer shows the value of our approach, it
clearly needs to be developed further to make it more
useful. Sorting the table on different columns would be
convenient. One issue is how to show objects in a
collection which are of various subclasses, with different
extra fields. One approach would be to show the union of
all fields; when a row was selected, just the fields of that
row could be shown. Another approach is to provide
another means of seeing the extra fields for any row.

Trees
As shown in Figure 6, an embedded object inside the basic
GUI view may be expanded to show further detail.
However, often it is useful to see just those associations
between objects that are relevant to the user's task.
We introduced tree viewers to permit this. For example, a
tree viewer for a Project is shown in Fig. 7, in which a
subset of all the information is provided.
After exploring various approaches to configuration of a
tree, we found that it was best to permit confiuration once
the tree was presented to the user. It is awkward to choose
beforehand what information is to be shown. This is
especially because of references to objects that are of
subclasses of the classes of interest. These can only be
known dynamically, along with the further objects that they
may reference.

Figure 6. Expanding in the Basic GUI

While a naked object is still used to represent the
configuration information (so that it is also persistent), we
allow the user to configure the tree through the use of a
popup menu.

Figure 7. Tree Viewer of Project

Charts
A rather specialised viewer for charts was created which
makes use of jFreeChart [4], as illustrated in Fig. 8. This
viewer is to be generalised so that the user can more easily
select the data in a collection that is to be charted.

Maps
Pawson shows how a map can be used effectively in an
expressive system [10]. An example of the use of our map
viewer is shown in Fig. 9. Icons for People naked objects
in a collection are located on a map (the background is
specified as a GIF), according to a Location field with x
and y values. The user may drag the icons to move them
on the map and to change their underlying location. As
with other viewers, an icon may be dragged from the map

on to the desktop, where it is shown by the basic GUI in a
window.

Figure 8. Chart Viewers

This is to be generalised in various ways. The location
could also be defined through a method, so that arbitrary
information can be mapped to a map location (this would
prevent the user from changing the location on the map
unless this could also be mapped back to the underlying
data).

Figure 9. Map viewer

There are circumstances where the area of the naked object
on a map may have meaning, such as when showing
furniture of various sizes in a room. The viewer could
allow the sizes of the furniture to be changed, as well as
their location.

Containers
A user may be viewing multiple objects that are relevant to
some decision that's to be made. If there is some delay
before this can be completed, the context of the decision
can be easily lost. We developed a simple Container
viewer which locates naked objects in a window. For
example, a container holding a few objects is shown in
Figure 10.

Figure 10. Container Viewer

Any naked object can be dropped into the container and
dragged about within it. Unlike the map viewer, the
location of an object is not a function of the object itself.
Separate naked objects are used to represent the container,
each of the objects within it and their location; these are
then automatically persistent.

Composites
It can be useful to compose viewers from other ones. We
have experimented with a range of simple viewers and with
means of composing them. Fig. 11 shows a Desktop viewer
which composes viewers by showing them as Java Swing
JInternalFrames.

Figure 11. Composite viewers

Each of the frames in turn are composed of viewers. The
left frame is similar to a basic GUI window. It is
constructed automatically by adding a header viewer and
viewers for each of the fields of the objects to a Composite
viewer. Collections are composed using header viewers
with small icons. The header viewer displays the icon and
title for the object and provides a way to invoke methods
on the naked object through a popup. The user may use a
popup on any field name to get a copy of the viewer
displaying that field (with or without the field name).
The right frame in Fig. 11 provides a specialised view into
the same Project as that shown on the right side. It is
composed of a subset of the viewers of the left frame (the
Title and the collection of the Tasks field, without the field

name). In addition, it includes a button-based viewer for an
action of the Project object.
We plan to rebuild some of the previous viewers to make
use of such composites; for example, to allow viewers in
Table cells.

DISCUSSION AND FUTURE WORK
Viewers are also naked objects; they are first-class. Hence
we are able to apply viewers to viewers themselves. This
can be useful with the configuration of more complex
viewers. It also means that viewers are automatically
persistent in the Naked Objects framework.
We are currently working on ways to reuse composed
viewers in a general way, by being (visually) explicit about
parameters. We have built some method viewers, including
buttons, that provide alternatives to the popup menu for
invoking methods on an object. We are now exploring
ways of composing method viewers in a general way.
We aim to provide viewers that span the range from user
interfaces to visual languages. A graph viewer is in
progress, which will allow visual notations such as UML
and circuits to be easily defined. We have defined
Emperor, a meta-model for Naked Objects classes; this can
be used to define classes by creating naked objects and
associating them. It generates the appropriate Java code. It
would be convenient to use this with the graph viewer to
provide something similar to UML class diagrams.
Finally, we are reconsidering the use of space in user
interfaces. The approaches of basic interfaces appear to
arise as a compromise due to a lack of screen space. For
example, a common approach is illustrated with an email
client. The user clicks on a Folder to select it and to show
the headers of the contained email messages inside a table.
Selecting a message in the table shows the full message
elsewhere. The menus are shared to avoid using space.
They are modal, reflecting the state of the selected items
and operating on them. The organisation of the menus can
be confusing to the user, as there is usually not a direct
mapping on to the objects of interest.
We are developing a zoomable interface using Jazz [3],
which will allow for viewers to be scaled and embedded to
arbitrary degrees. As the user zooms in on a viewer, finer
detail will become apparent. This eliminates the need to
conserve screen space, and allows the user to follow the
metaphor of going closer to see more detail. There are
several crucial issues in the development of this interface:

• How does the user move through the space
without getting lost?

• How does the user compose and scale viewers in
this space in a simple manner?

RELATED WORK
Related work has been carried out in the general area of
model-based user interface development [6]. Our work
differs from other work in this area by breaking some usual

assumptions (eg, upfront design of interaction to handle
tasks) and bringing several ideas and technologies together
to provide a more sophisticated and general approach.
VIKI is a hypertext system which allows users to evolve
the structure as required from semi-structured data [7]. As
the information is better understood, it can be reorganised
(refactored) by the users, with the user of multiple views.
VIKI differs from our work in that text is the elementary
data type, augmented by simple graphics. In our approach,
we permit the full range of OO modelling capability of
Java and permit methods to be represented visually.
Perlin and Meyer show that zoomable user interfaces can
provide a way of managing the nesting of complex data
[12]. User interface components may be scaled and
nested. The work that we have underway differs in that we
allow viewers to be composed dynamically.
Jazz provides a general-purpose zoomable interface [3]. It
permits Swing components to be embedded in the 2D
screen graph. Changes to the nodes in the scene graph are
automatically reflected to the user through one or more
cameras looking into the scene.
BuildByWire is a toolkit for defining visual language
notations and their editors through direct manipulation
[8,5]. As well as using Java layout managers, this makes
use of constraints to define the geometric relationships in
the notation. Once a visual notation has been developed, it
is connected to an underlying object model, which manages
the semantics of the visual notation. However, developing
the view and the model separately is awkward in
comparison to the approach we have used with naked
objects, where the viewers grow out of the underlying
model.

CONCLUSIONS
First-class viewers augment the power of the Naked
Objects framework. They allow the user to select
appropriate ways of viewing the data of interest at a
particular moment.
We have developed several general-purpose viewers that
may be used for a range of applications. Some need to be
generalised further to make them more generally useful.
Other viewers are needed to provide a more complete set.
Specialised viewers for particular applications will still be
required, these can easily be added.
We consider that there is a continuum from a graphical user
interface through visual notations to visual languages. Our

longer-term aim is to provide first-class viewers to cover
this range.

REFERENCES
1. Beck, K. eXtreme Programming Explained, Addison

Wesley, 2000.
2. Beck, K. Test Driven Development: By Example,

Addison Wesley, 2002.
3. Bederson, B. B. , Meyer, J., Good, L. "Jazz: an

extensible zoomable user interface graphics toolkit in
Java", Procs of the 13th annual ACM symposium on
User interface Software and Technology, p.171-180,
November 6-8, 2000, San Diego.

4. http://www.object-refinery.com/jfreechart/
5. J.C. Grundy, W.B. Mugridge, and J.G. Hosking,

"Visual Specification of Multi-View Visual
Environments", procs. VL'98, IEEE CS Press, 1999.

6. Keränen, H. and Plomp, J. "Adaptive runtime layout of
hierarchical UI components", Procs of the Second
Nordic Conference on Human-computer Interaction,
Aarhus, Denmark, ACM, 2002, pp251-254.

7. Marshall, C. C., Shipman III, F. M. and Coombs, J. H.
“VIKI: spatial hypertext supporting emergent
structure”, Proc. of ECHT'94.

8. Mugridge, W.B., Hosking, J.G. and Grundy, J.C.
"Vixels, CreateThroughs, DragThroughs and
Attachment Regions in BuildByWire", OzCHI’98,
pp320-327, 1998.

9. Mugridge, R., "Test Driven Development and the
Scientific Method", procs. Agile Development
Conference, Salt Lake City, June 2003.

10. Pawson, R. and V. Wade. “Agile Development with
Naked Objects”, 4th Int. Conf. on Extreme
Programming and Agile Methodologies in Software
Engineering (XP2003), 2003. Lecture Notes in
Computer Science, Springer-Verlag.

11. Pawson, R. and Matthews, R. Naked Objects, John
Wiley and Sons, 2002.

12. Perlin, K. and Meyer, J. "Nested User Interface
Components", Proceedings of the 12th Annual ACM
Symposium on User Interface Software and
Technology, ACM, 1999, pp11-18.

13. K. Wuestefeld, “Prevayler”, http://www.prevayler.org.

