StatisticUtils.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.inference;

import java.util.Arrays;
import java.util.Collection;
import org.apache.commons.numbers.core.DD;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.numbers.core.Sum;
import org.apache.commons.statistics.descriptive.Mean;

/**
 * Utility computation methods.
 *
 * @since 1.1
 */
final class StatisticUtils {
    /** No instances. */
    private StatisticUtils() {}

    /**
     * Compute {@code x - y}.
     *
     * <p>If {@code y} is zero the original array is returned, else a new array is created
     * with the difference.
     *
     * @param x Array.
     * @param y Value.
     * @return x - y
     * @throws NullPointerException if {@code x} is null and {@code y} is non-zero
     */
    static double[] subtract(double[] x, double y) {
        return y == 0 ? x : Arrays.stream(x).map(v -> v - y).toArray();
    }

    /**
     * Compute the degrees of freedom as {@code n - 1 - m}.
     *
     * <p>This method is common functionality shared between the Chi-square test and
     * G-test. The pre-conditions for those tests are performed by this method.
     *
     * @param n Number of observations.
     * @param m Adjustment (assumed to be positive).
     * @return the degrees of freedom
     * @throws IllegalArgumentException if the degrees of freedom is not strictly positive
     */
    static int computeDegreesOfFreedom(int n, int m) {
        final int df = n - 1 - m;
        if (df <= 0) {
            throw new InferenceException("Invalid degrees of freedom: " + df);
        }
        return df;
    }

    /**
     * Gets the ratio between the sum of the observed and expected values.
     * The ratio can be used to scale the expected values to have the same sum
     * as the observed values:
     *
     * <pre>
     * sum(o) = sum(e * ratio)
     * </pre>
     *
     * <p>This method is common functionality shared between the Chi-square test and
     * G-test. The pre-conditions for those tests are performed by this method.
     *
     * @param expected Expected values.
     * @param observed Observed values.
     * @return the ratio
     * @throws IllegalArgumentException if the sample size is less than 2; the array
     * sizes do not match; {@code expected} has entries that are not strictly
     * positive; {@code observed} has negative entries; or all the observations are zero.
     */
    static double computeRatio(double[] expected, long[] observed) {
        Arguments.checkValuesRequiredSize(expected.length, 2);
        Arguments.checkValuesSizeMatch(expected.length, observed.length);
        Arguments.checkStrictlyPositive(expected);
        Arguments.checkNonNegative(observed);
        DD e = DD.ZERO;
        DD o = DD.ZERO;
        for (int i = 0; i < observed.length; i++) {
            e = e.add(expected[i]);
            o = add(o, observed[i]);
        }
        if (o.doubleValue() == 0) {
            throw new InferenceException(InferenceException.NO_DATA);
        }
        // sum(o) / sum(e)
        final double ratio = o.divide(e).doubleValue();
        // Allow a sum within 1 ulp of 1.0
        return Precision.equals(ratio, 1.0, 0) ? 1.0 : ratio;
    }

    /**
     * Adds the value to the sum.
     *
     * @param sum Sum.
     * @param v Value.
     * @return the new sum
     */
    private static DD add(DD sum, long v) {
        // The condition here is a high probability branch if the sample is
        // frequency counts which are typically in the 32-bit integer range,
        // i.e. all the upper bits are zero.
        return (v >>> Integer.SIZE) == 0 ?
            sum.add(v) :
            sum.add(DD.of(v));
    }

    // Specialised statistic methods not directly supported by o.a.c.statistics.descriptive

    /**
     * Returns the arithmetic mean of the entries in the input arrays,
     * or {@code NaN} if the combined length of the arrays is zero.
     *
     * <p>Supports a combined length above the maximum array size.
     *
     * <p>A two-pass, corrected algorithm is used, starting with the definitional formula
     * computed using the array of stored values and then correcting this by adding the
     * mean deviation of the data values from the arithmetic mean. See, e.g. "Comparison
     * of Several Algorithms for Computing Sample Means and Variances," Robert F. Ling,
     * Journal of the American Statistical Association, Vol. 69, No. 348 (Dec., 1974), pp.
     * 859-866.
     *
     * @param samples Values.
     * @return the mean of the values or NaN if length = 0
     */
    static double mean(Collection<double[]> samples) {
        final double mean = samples.stream()
            .map(Mean::of)
            .reduce(Mean::combine)
            .orElseGet(Mean::create)
            .getAsDouble();
        // Second-pass correction.
        // Note: The correction may not be finite in the event of extreme values.
        // In this case the calling method computation will fail when the mean
        // is used and we do not check for overflow here.
        final long n = samples.stream().mapToInt(x -> x.length).sum();
        return mean + samples.stream()
            .flatMapToDouble(Arrays::stream).map(v -> v - mean).sum() / n;
    }

    /**
     * Returns the mean of the (signed) differences between corresponding elements of the
     * input arrays.
     *
     * <pre>
     * sum(x[i] - y[i]) / x.length
     * </pre>
     *
     * <p>This method avoids intermediate array allocation.
     *
     * @param x First array.
     * @param y Second array.
     * @return mean of paired differences
     * @throws IllegalArgumentException if the arrays do not have the same length.
     */
    static double meanDifference(double[] x, double[] y) {
        final int n = x.length;
        if (n != y.length) {
            throw new InferenceException(InferenceException.VALUES_MISMATCH, n, y.length);
        }
        // STATISTICS-84: Use a single-pass extended precision sum.
        final Sum sum = Sum.create();
        for (int i = 0; i < n; i++) {
            sum.add(x[i] - y[i]);
        }
        return sum.getAsDouble() / n;
    }

    /**
     * Returns the variance of the (signed) differences between corresponding elements of
     * the input arrays, or {@code NaN} if the arrays are empty.
     *
     * <pre>
     * var(x[i] - y[i])
     * </pre>
     *
     * <p>Returns the bias-corrected sample variance (using {@code n - 1} in the denominator).
     * Returns 0 for a single-value (i.e. length = 1) sample.
     *
     * <p>This method avoids intermediate array allocation.
     *
     * <p>Uses a two-pass algorithm. Specifically, these methods use the "corrected
     * two-pass algorithm" from Chan, Golub, Levesque, <i>Algorithms for Computing the
     * Sample Variance</i>, American Statistician, vol. 37, no. 3 (1983) pp.
     * 242-247.
     *
     * @param x First array.
     * @param y Second array.
     * @param mean the mean difference between corresponding entries
     * @return variance of paired differences
     * @throws IllegalArgumentException if the arrays do not have the same length.
     * @see #meanDifference(double[], double[])
     */
    static double varianceDifference(double[] x, double[] y, double mean) {
        final int n = x.length;
        if (n != y.length) {
            throw new InferenceException(InferenceException.VALUES_MISMATCH, n, y.length);
        }
        if (n == 1) {
            return 0;
        }
        // As per o.a.c.statistics.descriptive.Variance
        double s = 0;
        double ss = 0;
        for (int i = 0; i < n; i++) {
            final double dx = (x[i] - y[i]) - mean;
            s += dx;
            ss += dx * dx;
        }
        // sum-of-squared deviations = sum(x^2) - sum(x)^2 / n
        // Divide by (n-1) for sample variance
        return (ss - (s * s / n)) / (n - 1);
    }
}