LaplaceDistribution.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
/**
* Implementation of the Laplace distribution.
*
* <p>The probability density function of \( X \) is:
*
* <p>\[ f(x; \mu, b) = \frac{1}{2b} \exp \left( -\frac{|x-\mu|}{b} \right) \]
*
* <p>for \( \mu \) the location,
* \( b > 0 \) the scale, and
* \( x \in (-\infty, \infty) \).
*
* @see <a href="https://en.wikipedia.org/wiki/Laplace_distribution">Laplace distribution (Wikipedia)</a>
* @see <a href="https://mathworld.wolfram.com/LaplaceDistribution.html">Laplace distribution (MathWorld)</a>
*/
public final class LaplaceDistribution extends AbstractContinuousDistribution {
/** The location parameter. */
private final double mu;
/** The scale parameter. */
private final double beta;
/** log(2 * beta). */
private final double log2beta;
/**
* @param mu Location parameter.
* @param beta Scale parameter (must be positive).
*/
private LaplaceDistribution(double mu,
double beta) {
this.mu = mu;
this.beta = beta;
log2beta = Math.log(2.0 * beta);
}
/**
* Creates a Laplace distribution.
*
* @param mu Location parameter.
* @param beta Scale parameter (must be positive).
* @return the distribution
* @throws IllegalArgumentException if {@code beta <= 0}
*/
public static LaplaceDistribution of(double mu,
double beta) {
if (beta <= 0) {
throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta);
}
return new LaplaceDistribution(mu, beta);
}
/**
* Gets the location parameter of this distribution.
*
* @return the location parameter.
*/
public double getLocation() {
return mu;
}
/**
* Gets the scale parameter of this distribution.
*
* @return the scale parameter.
*/
public double getScale() {
return beta;
}
/** {@inheritDoc} */
@Override
public double density(double x) {
return Math.exp(-Math.abs(x - mu) / beta) / (2.0 * beta);
}
/** {@inheritDoc} */
@Override
public double logDensity(double x) {
return -Math.abs(x - mu) / beta - log2beta;
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
if (x <= mu) {
return 0.5 * Math.exp((x - mu) / beta);
}
return 1.0 - 0.5 * Math.exp((mu - x) / beta);
}
/** {@inheritDoc} */
@Override
public double survivalProbability(double x) {
if (x <= mu) {
return 1.0 - 0.5 * Math.exp((x - mu) / beta);
}
return 0.5 * Math.exp((mu - x) / beta);
}
/** {@inheritDoc} */
@Override
public double inverseCumulativeProbability(double p) {
ArgumentUtils.checkProbability(p);
if (p == 0) {
return Double.NEGATIVE_INFINITY;
} else if (p == 1) {
return Double.POSITIVE_INFINITY;
}
final double x = (p > 0.5) ? -Math.log(2.0 * (1.0 - p)) : Math.log(2.0 * p);
return mu + beta * x;
}
/** {@inheritDoc} */
@Override
public double inverseSurvivalProbability(double p) {
ArgumentUtils.checkProbability(p);
if (p == 1) {
return Double.NEGATIVE_INFINITY;
} else if (p == 0) {
return Double.POSITIVE_INFINITY;
}
// By symmetry: x = -icdf(p); then transform back by the scale and location
final double x = (p > 0.5) ? Math.log(2.0 * (1.0 - p)) : -Math.log(2.0 * p);
return mu + beta * x;
}
/**
* {@inheritDoc}
*
* <p>The mean is equal to the {@linkplain #getLocation() location}.
*/
@Override
public double getMean() {
return getLocation();
}
/**
* {@inheritDoc}
*
* <p>For scale parameter \( b \), the variance is \( 2 b^2 \).
*/
@Override
public double getVariance() {
return 2.0 * beta * beta;
}
/**
* {@inheritDoc}
*
* <p>The lower bound of the support is always negative infinity.
*
* @return {@linkplain Double#NEGATIVE_INFINITY negative infinity}.
*/
@Override
public double getSupportLowerBound() {
return Double.NEGATIVE_INFINITY;
}
/**
* {@inheritDoc}
*
* <p>The upper bound of the support is always positive infinity.
*
* @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
*/
@Override
public double getSupportUpperBound() {
return Double.POSITIVE_INFINITY;
}
/** {@inheritDoc} */
@Override
double getMedian() {
// Overridden for the probability(double, double) method.
// This is intentionally not a public method.
return mu;
}
}