CauchyDistribution.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.StableSampler;
/**
* Implementation of the Cauchy distribution.
*
* <p>The probability density function of \( X \) is:
*
* <p>\[ f(x; x_0, \gamma) = { 1 \over \pi \gamma } \left[ { \gamma^2 \over (x - x_0)^2 + \gamma^2 } \right] \]
*
* <p>for \( x_0 \) the location,
* \( \gamma > 0 \) the scale, and
* \( x \in (-\infty, \infty) \).
*
* @see <a href="https://en.wikipedia.org/wiki/Cauchy_distribution">Cauchy distribution (Wikipedia)</a>
* @see <a href="https://mathworld.wolfram.com/CauchyDistribution.html">Cauchy distribution (MathWorld)</a>
*/
public final class CauchyDistribution extends AbstractContinuousDistribution {
/** The location of this distribution. */
private final double location;
/** The scale of this distribution. */
private final double scale;
/** Density factor (scale / pi). */
private final double scaleOverPi;
/** Density factor (scale^2). */
private final double scale2;
/**
* @param location Location parameter.
* @param scale Scale parameter.
*/
private CauchyDistribution(double location,
double scale) {
this.scale = scale;
this.location = location;
scaleOverPi = scale / Math.PI;
scale2 = scale * scale;
}
/**
* Creates a Cauchy distribution.
*
* @param location Location parameter.
* @param scale Scale parameter.
* @return the distribution
* @throws IllegalArgumentException if {@code scale <= 0}.
*/
public static CauchyDistribution of(double location,
double scale) {
if (scale <= 0) {
throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, scale);
}
return new CauchyDistribution(location, scale);
}
/**
* Gets the location parameter of this distribution.
*
* @return the location parameter.
*/
public double getLocation() {
return location;
}
/**
* Gets the scale parameter of this distribution.
*
* @return the scale parameter.
*/
public double getScale() {
return scale;
}
/** {@inheritDoc} */
@Override
public double density(double x) {
final double dev = x - location;
return scaleOverPi / (dev * dev + scale2);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
return cdf((x - location) / scale);
}
/** {@inheritDoc} */
@Override
public double survivalProbability(double x) {
return cdf(-(x - location) / scale);
}
/**
* Compute the CDF of the Cauchy distribution with location 0 and scale 1.
* @param x Point at which the CDF is evaluated
* @return CDF(x)
*/
private static double cdf(double x) {
return 0.5 + (Math.atan(x) / Math.PI);
}
/**
* {@inheritDoc}
*
* <p>Returns {@link Double#NEGATIVE_INFINITY} when {@code p == 0}
* and {@link Double#POSITIVE_INFINITY} when {@code p == 1}.
*/
@Override
public double inverseCumulativeProbability(double p) {
ArgumentUtils.checkProbability(p);
if (p == 0) {
return Double.NEGATIVE_INFINITY;
} else if (p == 1) {
return Double.POSITIVE_INFINITY;
}
return location + scale * Math.tan(Math.PI * (p - 0.5));
}
/**
* {@inheritDoc}
*
* <p>Returns {@link Double#NEGATIVE_INFINITY} when {@code p == 1}
* and {@link Double#POSITIVE_INFINITY} when {@code p == 0}.
*/
@Override
public double inverseSurvivalProbability(double p) {
ArgumentUtils.checkProbability(p);
if (p == 1) {
return Double.NEGATIVE_INFINITY;
} else if (p == 0) {
return Double.POSITIVE_INFINITY;
}
return location - scale * Math.tan(Math.PI * (p - 0.5));
}
/**
* {@inheritDoc}
*
* <p>The mean is always undefined.
*
* @return {@link Double#NaN NaN}.
*/
@Override
public double getMean() {
return Double.NaN;
}
/**
* {@inheritDoc}
*
* <p>The variance is always undefined.
*
* @return {@link Double#NaN NaN}.
*/
@Override
public double getVariance() {
return Double.NaN;
}
/**
* {@inheritDoc}
*
* <p>The lower bound of the support is always negative infinity.
*
* @return {@linkplain Double#NEGATIVE_INFINITY negative infinity}.
*/
@Override
public double getSupportLowerBound() {
return Double.NEGATIVE_INFINITY;
}
/**
* {@inheritDoc}
*
* <p>The upper bound of the support is always positive infinity.
*
* @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
*/
@Override
public double getSupportUpperBound() {
return Double.POSITIVE_INFINITY;
}
/** {@inheritDoc} */
@Override
double getMedian() {
// Overridden for the probability(double, double) method.
// This is intentionally not a public method.
return location;
}
/** {@inheritDoc} */
@Override
public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
// Cauchy distribution =
// Stable distribution with alpha=1, beta=0, gamma=scale, delta=location
return StableSampler.of(rng, 1, 0, getScale(), getLocation())::sample;
}
}